Part 1: Roleplay Dialogue

Scenario: A Mechanical Engineer is working with additive manufacturing (3D printing) technologies to create mechanical parts with a colleague.

Keywords: Selective laser sintering (SLS), Fused deposition modeling (FDM), Additive layer manufacturing, Topology optimization, Rapid tooling

Oliver: We've been getting great results with **additive layer manufacturing**, but I think we need to refine the print settings for better resolution.

Sophia: I agree. The surface finish isn't as smooth as we'd like, especially with our **fused deposition modeling (FDM)** prints.

Oliver: Exactly. I was thinking of switching to **selective laser sintering (SLS)** for certain components. It should give us better strength and detail.

Sophia: That makes sense. **SLS** will work well for complex geometries, but it might not be as cost-effective for large production runs.

Oliver: True. We should also apply **topology optimization** to reduce material waste while maintaining structural integrity.

Sophia: Good idea. That way, we can design lighter components without compromising durability.

Oliver: And we should explore **rapid tooling** for producing molds and fixtures. It could significantly speed up our prototyping process.

Sophia: Absolutely. If we optimize our designs properly, we can shorten lead times and improve production efficiency.

Oliver: Let's test different settings on our **FDM** printer first, then move on to **SLS** if necessary.

Sophia: Sounds like a plan. I'll adjust the printer parameters, and we'll review the results tomorrow.

Part 2: Comprehension Questions

- 1. What issue are they trying to improve with **FDM** printing?
 - (A) The power consumption
 - (B) The surface finish
 - (C) The color of the materials
 - (D) The software compatibility
- 2. Why might they switch to SLS printing?
 - (A) It is cheaper for mass production
 - (B) It allows for better resolution and strength
 - (C) It requires less design effort
 - (D) It uses the same material as $\ensuremath{\textbf{FDM}}$
- 3. How does topology optimization help their designs?
 - (A) It makes the parts heavier
 - (B) It improves material waste reduction
 - (C) It increases manufacturing time
 - (D) It changes the printing method
- 4. What is the benefit of **rapid tooling** in their process?
 - (A) It helps create molds and fixtures quickly
 - (B) It increases labor costs
 - (C) It makes manual machining easier
 - (D) It removes the need for prototyping

Part 3: Vocabulary List

• Selective laser sintering (SLS) – 選択的レーザー焼結法

- Fused deposition modeling (FDM) 熱溶解積層法
- Additive layer manufacturing 積層造形
- Topology optimization トポロジー最適化
- Rapid tooling 迅速な金型製作

Part 4: Answer Key

- 1. What issue are they trying to improve with FDM printing?
 (B) The surface finish
- 2. Why might they switch to SLS printing?
 (B) It allows for better resolution and strength
- 3. How does topology optimization help their designs?(B) It improves material waste reduction
- 4. What is the benefit of **rapid tooling** in their process?

(A) It helps create molds and fixtures quickly 🗹